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Abstract Cell-free protein synthesis is suitable for

stable-isotope labeling of proteins for NMR analysis.

The Escherichia coli cell-free system containing potas-

sium acetate for efficient translation (KOAc system) is

usually used for stable-isotope labeling, although it is

less productive than other systems. A system containing

a high concentration of potassium L-glutamate (L-Glu

system), instead of potassium acetate, is highly produc-

tive, but cannot be used for stable-isotope labeling of

Glu residues. In this study, we have developed a new

cell-free system that uses potassium D-glutamate (D-Glu

system). The productivity of the D-Glu system is

approximately twice that of the KOAc system. The cross

peak intensities in the 1H–15N HSQC spectrum of the

uniformly stable-isotope labeled Ras protein, prepared

with the D-Glu system, were similar to those obtained

with the KOAc system, except that the Asp intensities

were much higher for the protein produced with the D-

Glu system. These results indicate that the D-Glu system

is a highly productive cell-free system that is especially

useful for stable-isotope labeling of proteins.
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Abbreviations

CAT Chloramphenicol

acetyltransferase

HSQC Heteronuclear single quantum

coherence

Ras(Y32W)/D-Glu Ras(Y32W) protein

produced by the

D-Glu system

Ras(Y32W)/KOAc Ras(Y32W) protein

produced by the

KOAc system

Introduction

Cell-free (or in vitro) protein synthesis has become one

of the standard protein production methods for struc-

ture analysis (Yokoyama 2003; Vinarov et al. 2004).

The cell-free method is more suitable for producing
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stable-isotope labeled proteins than the conventional

cell-based (or in vivo) expression methods, for the

following reasons. The scrambling of the label, due to

metabolic pathways, in the cell-free system is less than

that in cells (Kigawa et al. 1995). The incorporation of

the labeled amino acid is much more efficient. Unlike

the cell-based method, only the produced protein is

labeled. The cell-free system with large-scale dialysis

(Spirin et al. 1988) is capable of synthesizing milligram

quantities of labeled protein, which is sufficient for

structure analysis (Kigawa et al. 1999). A number of

protein structures have been solved with uniformly

stable-isotope labeled proteins produced by the cell-

free method (for example: Maeda et al. 2004; Li et al.

2005; Yamasaki et al. 2005). By simply replacing the

amino acid(s) of interest in the cell-free reaction

solution with the labeled one(s), the protein can be

amino acid-selectively labeled, with reduced spectral

overlap (Kigawa et al. 1995; Wu et al. 2006).

The cell-free method requires potassium ions for

efficient translation. Potassium L-glutamate is usually

used as the potassium ion source (the L-Glu system)

(Kigawa et al. 1995; Jewett and Swartz 2004). The

protein synthesis reaction in the L-Glu system contin-

ues for 8 h, and more than 6 mg of the chloramphe-

nicol acetyltransferase (CAT) protein can be produced

in a 1 ml reaction solution, using the dialysis mode of

the cell-free method (Kigawa et al. 2004). However,

the L-Glu system is not suitable for stable-isotope

labeling (uniform or glutamate-selective) for NMR

analysis, as the system requires 200 mM potassium

L-glutamate. Alternatively, potassium acetate has been

used for uniform stable-isotope labeling (the KOAc

system) (Ozawa et al. 2004), although the productivity

of the KOAc system is generally about half of that of

the L-Glu system. In the present study, we developed a

novel method that uses potassium D-glutamate as the

potassium ion source (the D-Glu system) to achieve

highly productive cell-free protein synthesis suitable

for stable-isotope labeling.

Materials and methods

Sample preparation

The construction of the plasmids, other than pK7-CAT

(Kim et al. 1996), is described in the supplementary

material 1. The composition of the Escherichia coli cell-

free synthesis method with the L-Glu system, which

contains 200 mM potassium L-glutamate and 27 mM

ammonium acetate, was previously described (Kigawa

et al. 2004). For the D-Glu system, the 200 mM

potassium L-glutamate in the L-Glu system was replaced

by 230 mM potassium D-glutamate. In the KOAc sys-

tem, 100 mM potassium acetate was used in place of

potassium L-glutamate, and the concentration of

ammonium acetate was increased to 74 mM. The pro-

ductivity of the CAT protein was calculated from the

CAT activity, as described (Kigawa et al. 2004). The

cell-free protein synthesis reaction with the small-scale

dialysis system and the affinity purification of the pro-

duced proteins were performed as previously described

(Matsuda et al. 2006). The 13C/15N-labeled Ras(Y32W)

protein was synthesized using a dialysis system, with

9 ml of internal solution in 90 ml of external solution, in

which the unlabeled amino acids were substituted with

1.5 mM each of 20 kinds of 13C/15N-labeled amino acids

(Taiyo Nippon Sanso, Japan). The 15N-labeled Ra-

s(Y32W) proteins were synthesized as previously de-

scribed (Matsuda et al. 2006). The purification

procedure is described in supplementary material 2.

NMR analysis

The uniformly 13C/15N-labeled Ras(Y32W) proteins

were concentrated to 1 mM in the NMR buffer

[20 mM sodium phosphate buffer (pH 6.5) containing

100 mM NaCl, 5 mM MgCl2, 5 mM d-DTT, and 0.01%

NaN3]. The uniformly 15N-labeled Ras(Y32W) pro-

teins were concentrated to 0.5 mM in the NMR buffer.

To the protein solutions, 2H2O (10% v/v) was added.

All NMR measurements were performed at 25�C with

an AVANCE 700-MHz spectrometer equipped with a

CryoProbe (Bruker, Germany). Sequence-specific res-

onance assignments were made with the 13C/15N-

labeled Ras(Y32W) protein, using the standard triple-

resonance experiments (Bax 1994). All spectra were

processed using NMR pipe (Delaglio et al. 1995), and

the programs Kujira (version 0.913) (N. Kobayashi

et al. personal communication) and NMR View (ver-

sion 4.0.3) (Johnson 2004) were employed for optimal

visualization and spectral analyses.

Results and discussion

Optimal potassium glutamate concentration

The CAT protein was synthesized with various con-

centrations of potassium L-glutamate or potassium

D-glutamate (Fig. 1). In the absence of potassium glu-

tamate, the CAT productivity was 1.5 mg per 1 ml

internal solution. By increasing the concentration of

potassium L-glutamate to 250 mM, the CAT productivity

was enhanced to 6.8 mg/ml. The optimal potassium
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L-glutamate concentration was 200–300 mM. Mean-

while, the CAT productivity was linearly enhanced as

the concentration of potassium D-glutamate was in-

creased to 250 mM. Concentrations higher than

250 mM potassium D-glutamate significantly decreased

the productivity. The best CAT productivity, 6.5 mg/

ml, was obtained at a potassium D-glutamate concen-

tration of 250 mM. This result suggests that the pro-

ductivity enhancement by potassium glutamate is not

mainly exerted through metabolic pathways, in which

D-glutamate could not be used as a substrate in many

cases. The slightly higher productivity of the L-Glu

system at each concentration may reflect some minor

role of L-glutamate, which could not be replaced by

D-glutamate. The D-Glu system also produced as much

CAT protein as the L-Glu system with the commercial

E. coli lysate (supplementary material 3). When

potassium L-glutamate was replaced by sodium L-glu-

tamate or ammonium L-glutamate, only 3 mg/ml CAT

was obtained, which represents about 50% of the

productivity of the L-Glu system, indicating the

requirement of potassium ions as well as glutamate

(Fig. 1). A comparison of the productivities of four

different soluble domains of human proteins revealed

that the D-Glu system produced these domains as

efficiently as the L-Glu system (supplementary material

4), indicating that the D-Glu system can generally

produce a variety of proteins at a high yield.

NMR analysis

Uniformly 13C/15N-labeled Ras(Y32W) protein was

produced by the D-Glu system [Ras(Y32W)/D-Glu],

and the yield from 9 ml of internal solution was

34.1 mg. The 13C/15N-labeled Ras(Y32W)/D-Glu

reportedly retains the signal-transducing activity and

the sensitivity to the GTPase activating protein

(Yamasaki et al. 1994). The backbone amide reso-

nances in the 1H–15N HSQC spectrum were success-

fully assigned (Fig. 2). The assigned data were

deposited in the BMRB (accession number: 10051). It

should be noted that the cross peaks of the Glu resi-

dues were clearly observed for the 13C/15N-labeled

Ras(Y32W)/D-Glu.
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Fig. 1 CAT productivity at various potassium glutamate con-
centrations. Open circles, potassium D-glutamate; filled circles,
potassium L-glutamate; filled triangles, ammonium L-glutamate;
filled squares, sodium L-glutamate
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Fig. 2 The 1H–15N HSQC
spectrum of the uniformly
13C/15N-labeled Ras(Y32W)/
D-Glu. Assignments are
indicated beside the cross
peaks or defined by lines.
W32sc denotes the cross peak
of the side chain amide of
Trp32
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The 15N-labeled Ras(Y32W) proteins were pro-

duced by the D-Glu and KOAc systems, and the yields

from 3 ml internal solutions were 8.2 mg and 5.7 mg,

respectively. The relative cross peak intensities of

Ras(Y32W)/D-Glu were almost the same as those of

Ras(Y32W)/KOAc in the 1H–15N HSQC spectra,

except that the Asp cross peak intensities were about

two times higher (Fig. 3). This result showed that the

D-Glu system achieves excellent stable-isotope labeling

efficiency for each of the amino acids. In E. coli,

D-glutamate is an essential component of peptidogly-

can, and the enzyme glutamate racemase catalyzes the

conversion between D-glutamate and L-glutamate. The

D-Glu system was reportedly not suitable for the sta-

ble-isotope labeling of Glu residues, as the labeling

efficiency was decreased, presumably by the glutamate

racemase activity (Ozawa et al. 2004). However, in the

present study, we observed Glu cross peaks with the

same intensities as those of the KOAc system, indi-

cating that the glutamate racemase activity in our S30

extract is negligibly low. Thus, selective and uniform

labeling of proteins including Glu residues is possible

with the D-Glu system.

The cross peak intensities of Ras(Y32W)/KOAc

were almost the same as those of Ras(Y32W)/D-Glu,

except for the Asp intensities (approximately 50%). As

the optimal concentration of ammonium acetate in the

KOAc system (74 mM) is higher than that in the D-Glu

system (27 mM), unlabeled ammonium ions may be

metabolically incorporated into L-aspartate. We pre-

viously used the KOAc system for the large-scale

production of uniformly stable-isotope labeled proteins

for structure analysis by NMR. Unspecific acetylation

of the side chain amino groups of Lys residues was

occasionally observed. The PDZ domain of the human

KIAA1526 protein becomes highly acetylated during

the cell-free protein synthesis reaction. A peak inten-

sity analysis of the ESI-MS spectrum revealed that

approximately 70% of the PDZ domain product was

acetylated by the KOAc system. In contrast, the acet-

ylation was reduced to 28% for the PDZ domain syn-

thesized by the D-Glu system (supplementary material

5). This might be caused by the high concentration of

acetate ion within the reaction solution of the KOAc

system (192 mM), as compared with that of the D-Glu

system (45 mM).

Stable-isotope labeled amino acids are quite expen-

sive and impose an economic burden on the researcher.

Cost reduction is a crucial issue, especially in the struc-

tural genomics/proteomics era, which aims to determine

a large number of protein structures. By using the D-Glu

system, we reduced the cost for stable-isotope labeled

amino acids by half, because sufficient amounts of pro-

tein samples could be obtained with a half reaction scale,

as compared with the conventional KOAc system. We

have already prepared about one thousand uniformly
13C/15N-labeled proteins from higher eukaryotes, such as

human, mouse, and Arabidopsis, by the D-Glu system.

The NMR spectra of these proteins were of sufficient

quality for structural analyses.

The role of D-glutamate in the cell-free reaction is

still unknown and needs to be addressed. Since the

scrambling of the label is less than those in the other

systems, the D-Glu system offers the fundamental

reaction conditions for the further development of the

labeling technique.
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Fig. 3 Comparison of cross
peak intensities in the 1H–15N
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KOAc (open bars). The cross
peak intensities of each amino
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The intensities of Glu
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the average intensity
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